Macroscopic in vivo imaging of facial nerve regeneration in Thy1-GFP rats.
نویسندگان
چکیده
IMPORTANCE Facial nerve injury leads to severe functional and aesthetic deficits. The transgenic Thy1-GFP rat is a new model for facial nerve injury and reconstruction research that will help improve clinical outcomes through translational facial nerve injury research. OBJECTIVE To determine whether serial in vivo imaging of nerve regeneration in the transgenic rat model is possible, facial nerve regeneration was imaged under the main paradigms of facial nerve injury and reconstruction. DESIGN, SETTING, AND PARTICIPANTS Fifteen male Thy1-GFP rats, which express green fluorescent protein (GFP) in their neural structures, were divided into 3 groups in the laboratory: crush-injury, direct repair, and cross-face nerve grafting (30-mm graft length). The distal nerve stump or nerve graft was predegenerated for 2 weeks. The facial nerve of the transgenic rats was serially imaged at the time of operation and after 2, 4, and 8 weeks of regeneration. The imaging was performed under a GFP-MDS-96/BN excitation stand (BLS Ltd). INTERVENTION OR EXPOSURE Facial nerve injury. MAIN OUTCOME AND MEASURE Optical fluorescence of regenerating facial nerve axons. RESULTS Serial in vivo imaging of the regeneration of GFP-positive axons in the Thy1-GFP rat model is possible. All animals survived the short imaging procedures well, and nerve regeneration was followed over clinically relevant distances. The predegeneration of the distal nerve stump or the cross-face nerve graft was, however, necessary to image the regeneration front at early time points. Crush injury was not suitable to sufficiently predegenerate the nerve (and to allow for degradation of the GFP through Wallerian degeneration). After direct repair, axons regenerated over the coaptation site in between 2 and 4 weeks. The GFP-positive nerve fibers reached the distal end of the 30-mm-long cross-face nervegrafts after 4 to 8 weeks of regeneration. CONCLUSIONS AND RELEVANCE The time course of facial nerve regeneration was studied by serial in vivo imaging in the transgenic rat model. Nerve regeneration was followed over clinically relevant distances in a small number of experimental animals, as they were subsequently imaged at multiple time points. The Thy1-GFP rat model will help improve clinical outcomes of facial reanimation surgery through improving the knowledge of facial nerve regeneration after surgical procedures. LEVEL OF EVIDENCE NA.
منابع مشابه
A new model for facial nerve research: the novel transgenic Thy1-GFP rat.
OBJECTIVE To introduce a Thy1-GFP transgenic rat model, whose axons constitutively express green fluorescent protein (GFP), in order to study facial nerve regeneration. Facial nerve injury can cause devastating physical and social sequelae. The functional recovery of the facial nerve can result in synkinesis and permanent axonal misrouting. Facial nerve research has been hindered by the lack of...
متن کاملThe Long-term Effects of Uncultured Omental Adipose-derived Nucleated Cells Fraction and Bone-marrow Stromal Cells on Sciatic Nerve Regeneration
Objective- Adipose tissue is an appropriate source for isolation of cells with stem-cell–like properties. In the present long-term study, the effects of the omental adipose-derived nucleated cells (OADNCs) fraction were compared to those of the undifferentiated cultured bone marrow stromal cells (BMSCs) on sciatic nerve regeneration. Design- Experimental in vivo study. Animals- Fift...
متن کاملPromising Technique for Facial Nerve Reconstruction in Extended Parotidectomy
Introduction: Malignant tumors of the parotid gland account scarcely for 5% of all head and neck tumors. Most of these neoplasms have a high tendency for recurrence, local infiltration, perineural extension, and metastasis. Although uncommon, these malignant tumors require complex surgical treatment sometimes involving a total parotidectomy including a complete facial nerve resection. Severe fu...
متن کاملMembrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration
Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...
متن کاملFunctional, Histomorphometrical and Immunohistochemical Assessment of Sciatic Nerve Regeneration through Inside-Out Vein Graft in Rat
Objective- Comprehensive functional, histomorphometrical and immunohistochemical assessment of sciatic nerve regeneration through an inside-out vein graft in rat. Design- Experimental in vivo study. Animals- Fifty- four healthy male White Albino rats. Procedures- The rats were divided into three experimental groups (n=18), randomly: Sham-operation (NC), Transected control (TC) and Inside-out ve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JAMA facial plastic surgery
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2015